11 January 2026

#PyTorch

#PyTorch

Key Concepts


S.No Topic Sub-Topics
1PyTorchWhat is PyTorch, PyTorch vs TensorFlow, Installation, CPU vs GPU, PyTorch Ecosystem
2PyTorch TensorsTensor creation, Tensor types, Shape & dtype, Indexing & slicing, Tensor operations
3Tensor MathematicsArithmetic ops, Matrix multiplication, Broadcasting, Reduction ops, In-place ops
4Autograd BasicsComputational graph, requires_grad, backward(), grad attribute, detach()
5PyTorch CUDACUDA tensors, GPU availability, Moving data to GPU, Performance tips, Multi-GPU intro
6Neural Network Modulenn.Module, Parameters, Forward method, Model structure, Model summary
7Loss FunctionsMSELoss, CrossEntropyLoss, NLLLoss, Custom loss, Reduction methods
8OptimizersSGD, Adam, RMSprop, Learning rate, Weight decay
9Training LoopForward pass, Loss computation, Backpropagation, Optimizer step, Zero gradients
10Dataset & DataLoaderCustom Dataset, DataLoader, Batching, Shuffling, num_workers
11Data PreprocessingNormalization, Scaling, Augmentation, Transform pipeline, torchvision.transforms
12Linear RegressionModel definition, Loss & optimizer, Training, Evaluation, Visualization
13Logistic RegressionBinary classification, Sigmoid, BCE loss, Accuracy metric, Training loop
14Feedforward Neural NetworksDense layers, Activation functions, Hidden layers, Overfitting, Regularization
15Activation FunctionsReLU, Sigmoid, Tanh, Softmax, LeakyReLU
16Model EvaluationTrain vs eval mode, Validation loop, Metrics, Confusion matrix, Accuracy & loss
17Saving & Loading Modelsstate_dict, torch.save, torch.load, Checkpoints, Best practices
18Convolutional Neural NetworksConv layers, Pooling, Feature maps, CNN architecture, Use cases
19Image Classificationtorchvision datasets, CNN training, Data augmentation, Evaluation, Inference
20Transfer LearningPretrained models, Freezing layers, Fine-tuning, ResNet, VGG
21Recurrent Neural NetworksRNN basics, Sequence data, Hidden state, Vanishing gradients, Use cases
22LSTM & GRULSTM architecture, GRU basics, Sequence modeling, Time series, Text data
23Text ProcessingTokenization, Embeddings, torchtext, Padding, Sequence batching
24Custom Layers & ModelsCustom nn.Module, Parameter handling, Reusability, Debugging, Testing
25Regularization TechniquesDropout, BatchNorm, Weight decay, Early stopping, Data augmentation
26Learning Rate SchedulingStepLR, ReduceLROnPlateau, CosineAnnealing, Warm-up, Best practices
27Mixed Precision TrainingAMP basics, torch.cuda.amp, Performance gain, Memory optimization, Stability
28Model Deployment BasicsTorchScript, Tracing, Scripting, Inference optimization, Exporting models
29Debugging & ProfilingGradient issues, NaNs, torch.autograd profiler, Performance tuning, Common errors
30PyTorch Best PracticesCode structure, Reproducibility, Experiment tracking, Scaling training, Next steps

Interview question


Related Topics