11 January 2026

#Keras

#Keras

Key Concepts


S.No Topic Sub-Topics
1KerasOverview, Installation, Backend (TensorFlow), High-level API, Use cases
2Core ConceptsLayers, Models, Tensors, Activation functions, Input/Output shapes
3Sequential API BasicsSequential model, Adding layers, compile(), fit(), evaluate()
4Sequential API AdvancedMultiple layers, Dropout, Flatten, Dense, Activation layers
5Functional API BasicsInput(), Model(), multi-input/output, shared layers, layer connections
6Functional API AdvancedResidual connections, Branching models, Merging layers, Concatenate, Add layers
7Loss FunctionsBinary crossentropy, Categorical crossentropy, MSE, Custom loss, Sparse loss
8OptimizersSGD, Adam, RMSProp, learning rate, custom optimizer
9MetricsAccuracy, Precision, Recall, F1-score, Custom metrics
10CallbacksEarlyStopping, ModelCheckpoint, ReduceLROnPlateau, TensorBoard, custom callbacks
11Data PreprocessingNormalization, Standardization, One-hot encoding, ImageDataGenerator, Tokenizer
12RegularizationDropout, L1/L2, BatchNormalization, Weight constraints, Data augmentation
13Dense NetworksFeedforward networks, Layer configuration, Activation functions, Compile, Fit
14Convolutional Networks (CNN)Conv2D, MaxPooling2D, Flatten, Filters, Kernels
15Advanced CNNTransfer learning, Pretrained models, Fine-tuning, Data augmentation, Regularization
16Recurrent Networks (RNN)SimpleRNN, LSTM, GRU, sequence input, return sequences
17Advanced RNNBidirectional RNN, stacked RNN, attention mechanism, masking, stateful RNN
18Embedding LayersWord embeddings, Embedding layer, pretrained embeddings, input_dim, output_dim
19AutoencodersEncoder-Decoder, Dimensionality reduction, Reconstruction loss, Activation, Custom models
20GANs BasicsGenerator, Discriminator, Adversarial loss, Training loop, Applications
21GANs AdvancedConditional GAN, DCGAN, WGAN, Training stability, Image generation
22Custom LayersLayer subclassing, call(), build(), trainable weights, forward pass
23Custom ModelsModel subclassing, forward pass, training loop, GradientTape, metrics
24Model Saving & Loadingsave(), load_model(), SavedModel format, HDF5 format, weights only
25TensorBoardVisualization, Scalars, Images, Graphs, Embeddings
26Performance OptimizationMixed precision, GPU/TPU usage, Batch size, Learning rate tuning, Profiling
27Distributed TrainingMirroredStrategy, Multi-GPU, TPU, ParameterServerStrategy, Dataset sharding
28Integration with TensorFlowtf.data, tf.keras, TensorFlow Hub, Custom training loops, SavedModel export
29End-to-End NLP ProjectText preprocessing, Tokenization, Embeddings, LSTM/Transformer model, Evaluation
30End-to-End CV ProjectData preprocessing, CNN/Transfer learning, Training, Evaluation, Deployment

Interview question


Related Topics