11 January 2026

#Pandas

#Pandas

Key Concepts


S.No Topic Sub-Topics
1PandasOverview, Installation, Series, DataFrame, Basic operations
2Series BasicsCreating Series, Indexing, Slicing, Series methods, Data types
3DataFrame BasicsCreate DataFrame, Index/Columns, Shape, dtypes, head/tail
4Data Selectionloc, iloc, ix, column selection, row selection
5Data FilteringBoolean indexing, conditions, isin, between, query()
6Missing Dataisnull, notnull, fillna, dropna, interpolation
7Data CleaningDuplicates, rename, replace, strip whitespaces, type conversion
8Data Transformationapply, map, applymap, lambda functions, vectorized operations
9Aggregation & Groupinggroupby, aggregate, transform, filter, pivot tables
10Sorting & Rankingsort_values, sort_index, rank, ascending/descending, multi-level sorting
11Indexing & MultiIndexset_index, reset_index, hierarchical index, slicing, cross-section
12Concatenation & Mergingconcat, append, merge, join, indicator
13Reshaping Datamelt, pivot, stack, unstack, wide to long format
14Time Series BasicsDatetime conversion, date_range, indexing, resampling, frequency
15Time Series Advancedrolling, expanding, shifting, lag/lead, moving average
16String Operationsstr methods, contains, replace, split, regex
17Visualization with Pandasplot, line, bar, histogram, scatter
18Reading/Writing Dataread_csv, read_excel, read_json, to_csv, to_excel
19Advanced I/Oread_sql, read_parquet, read_hdf, read_pickle, compression
20Exploratory Data Analysisdescribe, info, value_counts, correlation, unique
21Multi-Column Operationsarithmetic, apply, assign, lambda, broadcasting
22Window Functionsrolling, expanding, ewm, groupby with window, custom functions
23Categorical Datacategory dtype, conversion, codes, sorting, filtering
24Sampling & Subsettingsample, head/tail, nth, slicing, random sampling
25Performance Optimizationvectorization, eval/query, categorical, chunking, memory usage
26MultiIndex Advancedstack/unstack, xs, swaplevel, sortlevel, indexing tricks
27Custom Functionsapply, pipe, lambda, function chaining, reusable utilities
28Integration with NumPy & SciPyarray operations, broadcasting, linear algebra, statistical functions, interoperability
29Real World Data ProjectsEDA, cleaning, aggregation, visualization, export results
30End-to-End ProjectData collection, cleaning, analysis, feature engineering, visualization

Interview question


Related Topics