04 November 2020

#Python

#Python
Machine Learning & Deep Learning
  • Scikit-learn - Machine learning algorithms
  • TensorFlow - Deep learning and neural networks
  • PyTorch - Deep learning, especially dynamic computation graphs
  • Keras - High-level neural networks API
  • XGBoost - Gradient boosting
  • LightGBM - Efficient gradient boosting framework
  • CatBoost - Gradient boosting with categorical features
  • FastAI - Simplified deep learning with PyTorch backend
  • Hugging Face Transformers - NLP with pre-trained models
  • Optuna - Hyperparameter optimization
Data Analysis & Manipulation
  • Pandas - Data manipulation and analysis
  • NumPy - Numerical computing
  • Dask - Parallel and distributed data processing
  • Polars - Fast DataFrames for big data
  • Vaex - Lazy and memory-efficient DataFrames
Data Visualization
  • Matplotlib - 2D plotting
  • Seaborn - Statistical plots
  • Plotly - Interactive plots
  • Bokeh - Web-based interactive visualization
  • Altair - Declarative statistical visualization
Natural Language Processing (NLP)
  • NLTK - Traditional NLP tasks
  • spaCy - Industrial-strength NLP
  • Gensim - Topic modeling and word vectors
  • TextBlob - Simple NLP operations
  • Flair - Pre-trained embeddings and NLP
Data Engineering & ETL
  • Airflow - Workflow automation
  • Luigi - Pipeline building
  • Pyspark - Distributed data processing
  • Petl - ETL operations
  • Kedro - Reproducible data science pipelines
Mathematics & Scientific Computing
  • SciPy - Scientific computations
  • SymPy - Symbolic mathematics
  • Statsmodels - Statistical modeling
  • NetworkX - Graph theory and networks
  • CVXPY - Convex optimization
Testing and Experimentation
  • Pytest - Testing framework
  • Unittest - Built-in test framework
  • Hypothesis - Property-based testing
  • Testcontainers - Integration testing with containers
  • Tox - Automated testing across environments

No comments:

Post a Comment

Most views on this month

Popular Posts