26 August 2024

#Prompt_Engineering

#Prompt_Engineering
Basic LLM Concepts
  • LLMs
  • Types of LLMs
  • How are LLMs Built?
  • Vocabulary
Prompting
  • Basic Prompting
  • Need for Prompt Engineering
Prompting
  • Basic Prompting
    • Use Delimiters to distinguish the data from the prompt.
    • Ask for Structured Output e.g. JSON, XML, HTML etc.
    • Include style information to modify the tone of output.
    • Give conditions to the model and ask if they are verified.
    • Give successful examples of completing tasks then ask.
    • Specify the steps required to perform a task.
    • Instruct model to work out its own solution before giving answers.
    • Iterate and Refine your prompts.
  • Need for Prompt Engineering
Prompting Techniques
  • Role Prompting
  • Few Shot Prompting
  • Chain of Thought Prompting
  • Zero Shot Chain of Thought
  • Least to Most Prompting
  • Dual Prompt Approach
  • Combining Techniques
  • Prompting Techniques
  • Parts of a Prompt
Real World Usage Examples
  • Structured Data
  • Inferring
  • Writing Emails
  • Coding Assistance
  • Study Buddy
  • Designing Chatbots
Pitfalls of LLMs
  • Citing Sources
  • Bias
  • Hallucinations
  • Math
  • Prompt Hacking
Improving Reliability
  • Prompt Debiasing
  • Prompt Ensembling
  • LLM Self Evaluation
  • Calibrating LLMs
  • Math
LLM Settings
  • Temperature
  • Top P
  • Other Hyperparameters
Image Prompting
  • Style Modifiers
  • Quality Boosters
  • Weighted Terms
  • Fix Deformed Generations
Prompt Hacking
  • Prompt Injection
  • Prompt Leaking
  • Jailbreaking
  • Defensive Measures
  • O!ensive Measures
Prompt_Engineering
Question Option A Option B Option C Option D

No comments:

Post a Comment

Most views on this month